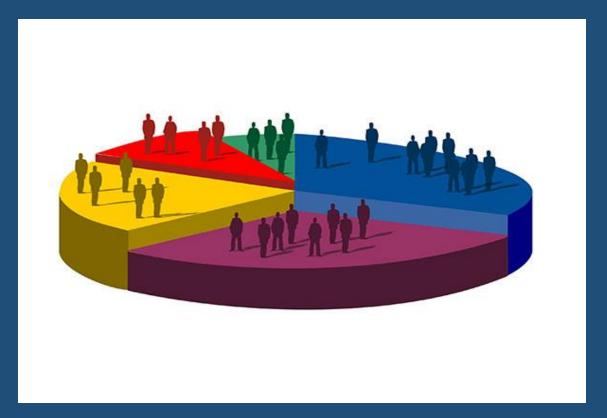
Metodología I Unidad 6

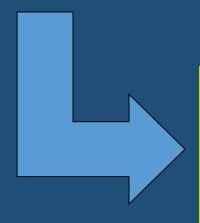


Prof. y Lic. en Psicología Lic. en Psicomotricidad Dr. Horacio Garcia Año 2023

Esta obra está bajo una

Muestreo

Es la técnica que se utiliza para seleccionar los elementos de una población que van a conformar la muestra



si esa elección no es cuidadosa, la muestra puede dejar de ser representativa

Tipos de poblaciones

Población finita: sabemos la cantidad de unidades que la integran porque disponemos de un registro documental. Por ejemplo, pacientes hospitalizados en una clínica; los alumnos de una asignatura determinada, etc..

Población infinita: en este caso se desconoce el total de elementos que la conforman. Por ejemplo, personas que han vivido situaciones estresantes, personas que viven en situación de indigencia, etc.

Tipos de muestreo

A) MUESTREO PROBABILÍSTICO

- 1. Todos los elementos de la población tienen una probabilidad mayor a cero de ser seleccionados en la muestra.
- 2. La probabilidad de inclusión de cada elemento en la muestra se conoce de forma precisa.

B) MUESTREO NO PROBABILÍSTICO

Cuando no se puede cumplir alguna o ambas condiciones del muestreo probabilístico

RESUMEN DE TIPOS DE MUESTREOS

	PROBABILÍSTICO	NO PROBABILÍSTICO
¿En que tipos de estudios se usa con más frecuencia?	cuantitativos	cualitativos
¿Todos los individuos de la población tienen la misma probabilidad de ser incluidos en la muestra?	Si	No
¿Se puede determinar cual es el nivel de confianza y el error muestral?	Si	No
¿Se pueden generalizar a la población los resultados obtenidos en la muestra?	Si	No
Eficiencia para controlar los sesgos en la muestra	Elevado	Вајо
¿A qué aspira?	Lograr inferencias estadísticas	Lograr inferencias Iógicas
Tamaño de la muestra	Mayor número	Menor número
Grado de dificultad	Más costoso y complejo	Más económico y sencillo

MUESTREO PROBABILÍSTICO

NECESITAMOS UN MARCO MUESTRAL (lista de elementos que componen el universo que queremos estudiar y de la cual se extrae la muestra) y luego CALCULAMOS EL TAMAÑO MUESTRAL (Excel)

Muestreo aleatorio simple: se extraen al azar un número determinado de elementos, 'n', del conjunto mayor 'N' o población,

<u>Muestreo sistemático:</u> requiere la elección de un individuo al azar y luego determinar cada cuantas unidades muestrales se extraerá el siguiente individuo hasta llegar al tamaño muestral fijado

<u>Muestreo estratificado:</u> se divide a la población en diferentes grupos o estratos porque tienen características particulares (género, nivel socioeconómico, etc). Luego a cada estrato se le aplica el muestreo aleatorio simple para elegir los elementos (personas) que formarán parte de la muestra.

<u>Muestreo por conglomerados:</u> acá la unidad muestral no son los individuos (como en los otros muestreos), sino el grupo de individuos o conglomerados. Por ejemplo: supongamos que en San Luis hay 200 Colegios; bueno, decides elegir 20 escuelas por lo que tu muestra la compondrán todos los elementos que existen en esos 20 colegios).

MUESTREO NO PROBABILÍSTICO

- <u>Muestreo casual o accidental</u>: acá los investigadores, sin ningún juicio previo, eligen de la población a las personas que accidentalmente se encuentren a su disposición y que participaran en el estudio.
- <u>Muestreo por conveniencia</u>: en este caso el investigador seleccionar a los individuos que le conviene, ya sea porque le resulta más fácil, o porque están más cerca, o porque son personas conocidas, etc.
- <u>Muestreo por cuotas</u>: en este caso el investigador divide la población en grupos o estratos y luego elige los individuos de cada uno de los grupos sin aplicar ningún método probabilístico.
- <u>Muestreo de bola de nieve</u>: este tipo de técnica es útil cuando el investigador desconoce a los individuos o no puede acceder a ellos. La muestra se va conformado con un primer individuo que a su vez va a proponer a otros, y así sucesivamente hasta alcanzar el tamaño muestral que desea el investigador.
- <u>Muestreo por juicio:</u> aquí, los participantes son seleccionados en función del tema, conocimiento y juicio del investigador.

PRUEBA DE HIPÓTESIS

Prueba de hipótesis

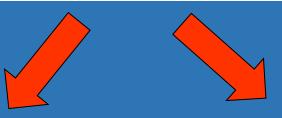
Proceso de formalización para darle tratamiento estadístico a las hipótesis con la finalidad de determinar si son definitivamente:

"En la prueba de hipótesis planteamos una regla especifica que determina si se puede aceptar o rechazar una afirmación acerca de una población dependiendo de la evidencia proporcionada por una muestra de datos

basándonos en probabilidades"

Prueba de hipótesis

LA PRUEBA DE HIPÓTESIS EXAMINA DOS HIPÓTESIS CONTRAPUESTAS



HIPÓTESIS NULA H0

HIPÓTESIS ALTERNATIVA H1

Prueba de hipótesis EJEMPLO

<u>Titulo</u>: **Niveles de hostilidad en policías de la ciudad de San Luis**

<u>Planteo del problema</u>: ¿Los policías de la ciudad de San Luis presentarán niveles de hostilidad elevados? ¿Existirán diferencias según sexo?

Objetivos

- Conocer el nivel de hostilidad de los policías de la ciudad de San Luis
- Verificar si existen diferencias en el nivel de hostilidad según sexo en la muestra

<u>Hipótesis</u>

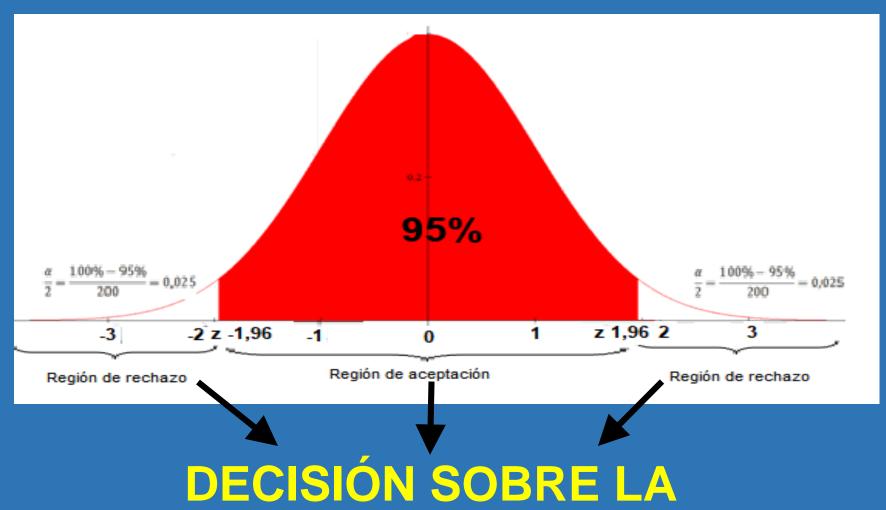
- Los policías de la ciudad de San Luis presentan niveles más elevados de hostilidad respecto de la población en general
- · Los policías hombres presentan niveles más elevados de hostilidad respecto de las mujeres.

HIPÓTESIS NULA HO

Los policías de la ciudad de San Luis NO presentan niveles más elevados de hostilidad respecto de la población en general

HIPÓTESIS ALTERNATIVA H1

Los policías de la ciudad de San Luis presentan niveles más elevados de hostilidad respecto de la población en general



DECISIÓN SOBRE LA HIPÓTESIS NULA

Prueba de hipótesis EJEMPLO

HIPÓTESIS NULA HO

Los policías de la ciudad de San Luis NO presentan niveles más elevados de hostilidad respecto de la población en general VS

HIPÓTESIS ALTERNATIVA H1

Los policías de la ciudad de San Luis presentan niveles más elevados de hostilidad respecto de la población en general

	Planteo I	Planteo II	Planteo III	
Planteo de la hipótesis	Los policías de la ciudad de San Luis presentan niveles DIFERENTES de hostilidad respecto de la población en general (µ = 65)	Los policías de la ciudad de San Luis presentan niveles MAYORES de hostilidad respecto de la población en general (µ = 65)	Los policías de la ciudad de San Luis presentan niveles MENORES de hostilidad respecto de la población en general (µ = 65)	
Formali- zación	H_o : $\mu = 65$ puntos H_1 : $\mu \neq 65$ puntos	H_o : $\mu <= 65$ puntos H_1 : $\mu > 65$ puntos	H_o : $\mu => 65$ puntos H_1 : $\mu < 65$ puntos	

LOS ERRORES DE TIPO I Y TIPO II

ERROR DE TIPO I: (error de tipo alfa (α) o falso positivo)
Cuando el investigador rechaza la hipótesis nula siendo en realidad válida falso positivo porque el investigador llega a la conclusión de que existe un efecto, una diferencia, cuando en realidad no existe.

ERROR DE TIPO II: (error de tipo beta (β) o falso negativo)
Cuando el investigador no rechaza la hipótesis nula siendo en realidad falsa el investigador concluye que no hay evidencia del efecto o diferencia cuando en realidad existe.

PROCEDIMIENTO DE PRUEBA DE HIPÓTESIS

PROCEDIMIENTO DE PRUEBA DE HIPÓTESIS

1. Planteo del contraste de hipótesis:

Hipótesis nula: H₀: $μ = μ_0$

Hipótesis alternativa: Prueba bilateral: $\mathbf{H}_1: \mu \neq \mu_0$

Prueba de una cola H₁: $\mu > \mu_0$ (o bien, H₁: $\mu < \mu_0$)

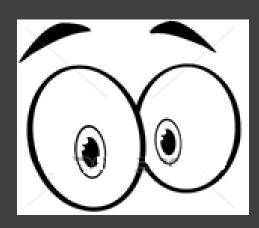
2. Establecemos el estadístico de prueba

$$Z_{prusba} = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}}$$

$$t_{prueba} = \frac{\bar{x} - \mu}{\frac{S}{\sqrt{n}}}$$

Determinamos la región de rechazo

- a) en el caso de una hipótesis bilateral: $\mathbf{z} < -\mathbf{z}_{\mathbf{x}/2}$ o $\mathbf{z} > \mathbf{z}_{\mathbf{x}/2}$
- b) En el caso de una hipótesis de una cola puede ser: $z \ge z_{\infty}$ (o bien, $z < -z_{\infty}$)
- 4. Seleccionamos un nivel de significación: Por ejemplo $\alpha = 0.05$
- 5. Calculamos la región de rechazo
- 6. Concluimos: Decidimos rechazar o no la hipótesis nula



Pruebas de hipótesis respecto la media poblacional

Para la media de una población con <u>muestras</u> grandes y con sigma (σ) conocida

$$Z_{prusba} = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}}$$

Para la media de una población con <u>muestras</u> grandes y con sigma (σ) desconocida

$$Z_{prusba} = \frac{\bar{x} - \mu}{\frac{\mathbf{S}}{\sqrt{n}}}$$

Para la media de una población con muestras pequeñas y con sigma (σ) conocida

$$t_{prusba} = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}}$$

Para la media de una población con <u>muestras</u> pequeñas y con sigma (σ) desconocida

$$t_{prusba} = \frac{\bar{x} - \mu}{\frac{S}{\sqrt{n}}}$$

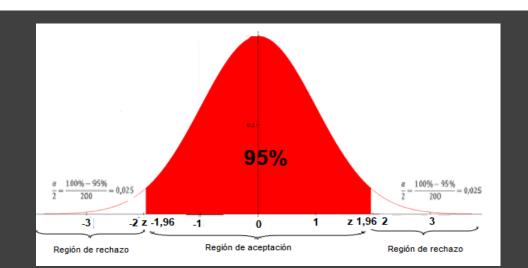
Prueba de hipótesis para la media de una población con sigma (σ) conocida

La variable tiene una distribución normal, conocemos la varianza (s) de la población y la muestra es grande (n >30)

El estadístico que corresponde usar es Z

Z es el valor estadístico \overline{X} es la media de la muestra μ es el valor de media supuesto \overline{A} cálculo del error estándar de la media muestral

 $Z_{prusba} = \frac{1}{\sqrt{}}$



Prueba de hipótesis para la media de una población con sigma (σ) conocida EJEMPLO

La media de extraversión en una muestra de 50 alumnos de secundaria (n=50) es de X=87,1 con una desviación estándar σ =2,1. Deseamos probar la hipótesis, con un nivel de significación de 0,05 (α = 0,05), de que es DISTINTA al promedio de la población μ = 88

Entonces....

- Hipótesis nula: H0: μ= 88
- Hipótesis alternativa: H1: μ ≠ 88 (Bilateral)

Estadístico de prueba y cálculo:

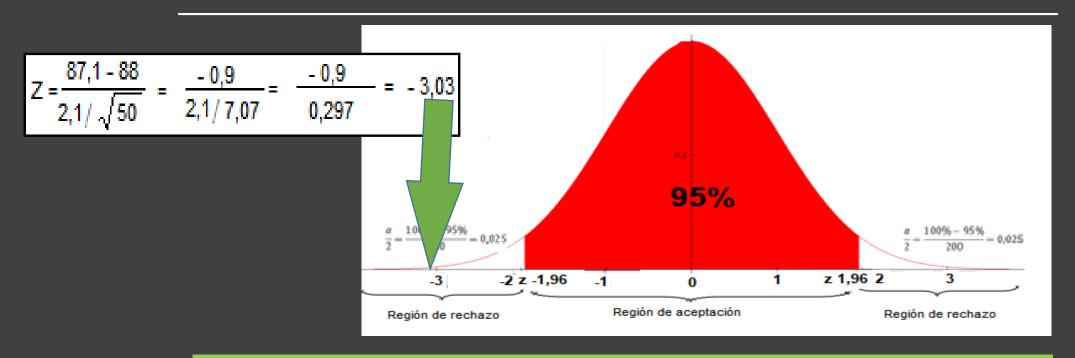
$$Z_{prueba} = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}} = Z = \frac{87,1 - 88}{2,1/\sqrt{50}} = \frac{-0.9}{2,1/7,07} = \frac{-0.9}{0,297} = -3,03$$

Región de rechazo: Si se quiere a = 0.05, entonces para prueba bilateral sería por cada cola de la distribución $z_{a/2} = 0.025$. Si buscamos este valor en la tabla de distribución normal se corresponde con el puntaje z = -1.96. *la región de rechazo estará conformada por z* > 1,96 o z < -1,96.

Tabla de distribución normal z

TABI	TABLA A: Probabilidades de la normal estándar									
	0.0	0.4			0.4	0.5				0.0
Z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
-3.4	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0002
-3.3	.0005	.0005	.0005	.0004	.0004	.0004	.0004	.0004	.0004	.0003
-3.2	.0007	.0007	.0006	.0006	.0006	.0006	.0006	.0005	.0005	.0005
-3.1	.0010	.0009	.0009	.0009	.0008	.0008	.0008	.0008	.0007	.0007
-3.0	.0013	.0013	.0013	.0012	.0012	.0011	.0011	.0011	.0010	.0010
-2.9	.0019	.0018	.0018	.0017	.0016	.0016	.0015	.0015	.0014	.0014
-2.8	.0026	.0025	.0024	.0023	.0023	.0022	.002	.0021	.0020	.0019
-2.7	.0035	.0034	.0033	.0032	.0031	.0030	.0 <mark>02</mark> 9	.0028	.0027	.0026
-2.6	.0047	.0045	.0044	.0043	.0041	.0040	.0 <mark>03</mark> 9	.0038	.0037	.0036
-2.5	.0062	.0060	.0059	.0057	.0055	.0054	.0 <mark>05</mark> 2	.0051	.0049	.0048
-2.4	.0082	.0080	.0078	.0075	.0073	.0071	.0 <mark>06</mark> 9	.0068	.0066	.0064
-2.3	.0107	.0104	.0102	.0099	.0096	.0094	.0091	.0089	.0087	.0084
-2.2	.0139	.0136	.0132	.0129	.0125	.0122	.0 <mark>11</mark> 9	.0116	.0113	.0110
-2.1	.0179	.0174	.0170	.0166	.0162	.0158	.0154	.0150	.0146	.0143
-2.0	.0228	.0222	0217	.0212	.0207	.0202	0107	.0192	.0188	.0183
-1.9	.0287	.0281	.0274	.0268	.0262	.0256	.0250	.0244	.0239	.0233
-1.8	.0359	.0351	.0344	.0336	.0329	.0322	.0314	.0307	.0301	.0294
-1.7	.0446	.0436	.0427	.0418	.0409	.0401	.0392	.0384	.0375	.0367
1.6	0540	0527	0526	0516	0505	0405	0.405	0.475	0.465	0.455

Prueba de hipótesis para la media de una población con sigma (*o*) conocida EJEMPLO



CALCULANDO EN INTERVALO

Como a X= 87,1, le corresponde un valor de z = -3,03 y éste cae en la región de rechazo decidimos rechazar la hipótesis nula que afirma que la media de la muestra es similar a la de la población con una probabilidad de error del 5%.

Prueba de hipótesis para la media de una población con sigma (σ) conocida EJEMPLO

TENIENDO EN CUENTA EL VALOR p:

Buscamos el valor de z = -3,03 en la tabla de Distribución Normal Estandarizada y vemos que le corresponde un valor p = 0,0012, menor al nivel de significación escogido (p = 0,0012 < a = 0,05) por lo que podemos concluir que rechazamos la hipótesis nula de que la media de extraversión en los alumnos de secundaria es similar a la población

TAB	TABLA A: Probabilidades de la normal estándar									
z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
-3.4	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0002
-3.3	.0005	.0005	.0005	.0004	.0004	.0004	.0004	.0004	.0004	.0003
-3.2	.0007	.0007	.0006	.0006	.0006	.0006	.0006	.0005	.0005	.0005
-3.1	.0010	.0009	.0009	.00.09	.0008	.0008	.0008	.0008	.0007	.0007
-3.0	0013	nn 3	DI(-13)	.0012	.0012	.0011	.0011	.0011	.0010	.0010
-2.9	.0019	.0018	.0018	.0017	.0016	.0016	.0015	.0015	.0014	.0014
-2.8	.0026	.0025	.0024	.0023	.0023	.0022	.0021	.0021	.0020	.0019
-2.7	.0035	.0034	.0033	.0032	.0031	.0030	.0029	.0028	.0027	.0026
-2.6	.0047	.0045	.0044	.0043	.0041	.0040	.0039	.0038	.0037	.0036
-2.5	.0062	.0060	.0059	.0057	.0055	.0054	.0052	.0051	.0049	.0048
_2 1	0082	0080	0078	0075	0073	0071	0060	0068	0066	0064

Pruebas Paramétricas y Pruebas No Paramétricas

Pruebas Paramétricas y Pruebas No Paramétricas

Las Pruebas Paramétricas se basan <u>necesariamente</u> en los principios de la <u>distribución normal</u> al momento de realizar los análisis, tomando frecuentemente como referencia los valores de media

Las Pruebas No Paramétricas analizan los datos *sin* el requerimiento de que tengan *una distribución particular*, tomando con muchas veces el valor de la mediana como referencia

Pruebas paramétricas	Pruebas no paramétricas
Menor exigencia para rechazar H ₀	Mayor exigencia para rechazar H ₀
Requiere que las variables sean normales y con un nivel de medición al menos de intervalo	No requiere que las variables sean normales y se puede aplicar en variables con un nivel de medición al menos ordinal.
Se implementa cuando las muestras son grandes	Se pueden utilizar con muestras pequeñas.
La distribución de los datos tiene que ser normal, no admite aplicarlas con distribuciones asimétricas y que no sean mesocúrticas	No exige normalidad en la forma de la distribución de los datos.
Su mayor potencia estadística permite hacer muchas suposiciones	Por tener menor potencia estadística no se pueden hacer muchas suposiciones.
Las hipótesis se basan en los valores de media, desviación estándar, en la linealidad de asociaciones	Las hipótesis se basan en rangos, mediana y frecuencia de datos.

PRUEBAS PARA LOS VALORES MEDIOS POBLACIONALES

Población y Muestra

- TODOS los posibles
 Individuos, objetos, mediciones y conteos
- Un PARÁMETRO describe a una Población.

Muestra

- PARTE "representativa" de la Población.
- Un ESTADÍSTICO describe a una Muestra.

Propósito del análisis:

Determinar si los valores medios de una variable investigada en una muestra son diferentes a los de la población

Pruebas para los valores medios poblacionales (Estrategia PARAMÉTRICA)

El estadístico
paramétrico para este
tipo de análisis es la
Prueba t para una
muestra

Supuestos asociados:

- la distribución de los datos es aproximadamente normal
- el tamaño de la muestra es grande (mayor a 30)
- la variable tiene un nivel de medición al menos intervalar

Procedimiento

- a) Formular las hipótesis nula y alternativa
 - H0= La muestra NO presenta valores promedios de ansiedad diferentes a los de la población
 - H1= La muestra presenta valores promedios de ansiedad diferentes a los de la población
- b) Establecer el estadístico de prueba adecuado: Prueba t para una muestra
- c) Seleccionar un nivel de significación: Alfa de 0,05
- d) Establecer la regla de decisión

 $H_0: \overline{\mathbb{X}} = 27,1$ $H_1: \overline{\mathbb{X}} \neq 27,1$

Pruebas para los valores medios poblacionales (Estrategia NO PARAMÉTRICA)

El estadístico No
paramétrico para este
tipo de análisis es la
Prueba Rangos de
Wilcoxon para una
muestra

Supuestos asociados:

- se puede aplicar aún si la variable presenta una distribución no normal.
- no exige un tamaño muestral grande (se puede realizar con una cantidad menor de 30 datos)
- la variable sometida a análisis puede tener un nivel de medición ordinal.

Procedimiento

- a) Formular las hipótesis nula y alternativa
 - H0= La muestra NO presenta valores de Mediana diferentes a los de la población en la variable ansiedad
 - H1= La muestra presenta valores de Mediana diferentes a los de la población en la variable ansiedad
- b) Establecer el estadístico de prueba adecuado: Prueba Rangos de Wilcoxon para una muestra
- c) Seleccionar un nivel de significación: Alfa de 0,05
- d) Establecer la regla de decisión

El contraste se hace teniendo en cuenta la Mediana

$$egin{array}{ll} \mathbf{H}_0 : & \mathsf{Me} = 27 \ \mathbf{H}_1 : & \mathsf{Me}
eq 27 \end{array}$$

Dr. Horacio Garcia Año 2023

PRUEBAS PARA LA DIFERENCIA DE VALORES MEDIOS ENTRE DOS MUESTRAS INDEPENDIENTES

Propósito del análisis:
Averiguar si existen
diferencias en los valores
medios (media o mediana)
entre dos muestras que sean
independientes

Pruebas para la diferencia de valores medios entre dos muestras independientes (Estrategia PARAMÉTRICA)

El estadístico
paramétrico para este
tipo de análisis es la
Prueba t para muestras
independientes

Supuestos asociados:

- La distribución de los datos es aproximadamente normal
- El tamaño de las muestras debe ser mayor a 30
- La variable a ser comparada tiene un nivel de medición al menos intervalar.
- La varianza es constante entre los grupos (homogeneidad de varianzas u homocedasticidad)

Procedimiento

- a) Formular las hipótesis nula y alternativa
 - •H0= La muestra de zona rural NO presenta valores de media significativamente diferentes de la muestra urbana en la variable Empatía.
 - •H1=La muestra de zona rural presenta valores de media significativamente diferentes de la muestra urbana en la variable Empatía.
- b) Establecer el estadístico de prueba adecuado: Prueba t para muestras independientes
- c) Seleccionar un nivel de significación: Alfa de 0,05
- d) Establecer la regla de decisión

El contraste se hace teniendo en cuenta la Media

$$\mathbf{H}_0$$
: $\bar{\mathbf{x}}(Rural) = \bar{\mathbf{x}}(Urbana)$

$$\mathbf{H}_1 : \overline{\mathbf{x}}(\mathsf{Rural}) \neq \overline{\mathbf{x}}(\mathsf{Urbana})$$

Pruebas para la diferencia de valores medios entre dos muestras independientes (Estrategia NO PARAMÉTRICA)

El estadístico No
paramétrico para este
tipo de análisis es la
Prueba U de MannWhitney para muestras
independientes

Supuestos asociados

- se puede aplicar aún si la variable presenta una distribución no normal o si las muestras no son homogéneas.
- no exige un tamaño muestral grande (se puede realizar con una cantidad menor de 30 datos)
- la variable sometida a análisis puede tener un nivel de medición ordinal.

Procedimiento

- a) Formular las hipótesis nula y alternativa
 - H0= La muestra de zona rural NO presenta valores de mediana significativamente diferentes de la muestra urbana en la variable Empatía.
 - H1= La muestra de zona rural presenta valores de mediana significativamente diferentes de la muestra urbana en la variable Empatía.
- b) Establecer el estadístico de prueba adecuado: Prueba U de Mann-Whitney para muestras independientes
- c) Seleccionar un nivel de significación: Alfa de 0,05
- d) Establecer la regla de decisión

El contraste se hace teniendo en cuenta la Mediana

 \mathbf{H}_0 : Me(Rural) = Me(Urbana)

 $\mathbf{H}_1: \mathsf{Me}(\mathsf{Rural}) \neq \mathsf{Me}(\mathsf{Urbana})$

PRUEBAS PARA LA DIFERENCIA DE VALORES MEDIOS ENTRE TRES O MÁS MUESTRAS INDEPENDIENTES

Propósito del análisis:
hacer una comparación de
los valores medios entre
tres grupos
independientes (muestras)
o más

Pruebas para la diferencia de valores medios entre tres o más muestras independientes ANOVA de un factor (Estrategia PARAMÉTRICA)

El estadístico
paramétrico para este
tipo de análisis son las
Pruebas **Tukey o Games-Howell**

Supuestos asociados:

- La distribución de los datos es aproximadamente normal
- El tamaño de las muestras debe ser mayor a 30
- La variable a ser comparada tiene un nivel de medición al menos intervalar.
- La varianza es constante entre los grupos (homogeneidad de varianzas u homocedasticidad)

Procedimiento

- a) Formular las hipótesis nula y alternativa
 - H0= La media de Resiliencia NO presenta variaciones significativas a nivel estadístico según Nivel educativo.
 - H1= La media de Resiliencia presenta variaciones significativas a nivel estadístico según Nivel educativo.
- b) Establecer el estadístico de prueba adecuado: Tukey o Games-Howell
- c) Seleccionar un nivel de significación: Alfa de 0,05
- d) Establecer la regla de decisión

El contraste se hace teniendo en cuenta la Media

H₁: x̄(Primario) ≠ x̄(Secundario) ≠ x̄(Universitario)

Pruebas para la diferencia de valores medios entre tres o más muestras independientes ANOVA de un factor (Estrategia NO PARAMÉTRICA)

El estadístico No paramétrico para este tipo de análisis es la Prueba Kruskal-Wallis

Supuestos asociados

- se puede aplicar aún si la variable presenta una distribución no normal o si las muestras no son homogéneas.
- no exige un tamaño muestral grande (se puede realizar con una cantidad menor de 30 datos)
- la variable sometida a análisis puede tener un nivel de medición ordinal.

Procedimiento

- a) Formular las hipótesis nula y alternativa
 - H0= La mediana de Resiliencia NO presenta variaciones significativas a nivel estadístico según Nivel educativo.
 - H1= La mediana de Resiliencia presenta variaciones significativas a nivel estadístico según Nivel educativo.
- b) Establecer el estadístico de prueba adecuado: Prueba ANOVA de un factor mediante Kruskal-Wallis
- c) Seleccionar un nivel de significación: Alfa de 0,05
- d) Establecer la regla de decisión

El contraste se hace teniendo en cuenta la Mediana

 \mathbf{H}_1 : Me(Primario) \neq Me(Secundario) \neq Me(Universitario)

PRUEBAS PARA LA DIFERENCIA DE VALORES MEDIOS ENTRE DOS MUESTRAS RELACIONADAS (DEPENDIENTES O APAREADAS)

Propósito del análisis:
Corroborar si existe
diferencias en los valores
medios de una variable
entre dos mediciones
obtenidas en una misma
muestra

Pruebas para la diferencia de valores medios entre dos muestras relacionadas (Dependientes o Apareadas) (Estrategia PARAMÉTRICA)

El estadístico paramétrico para este tipo de análisis es la Prueba t de Student para muestras relacionadas o apareadas

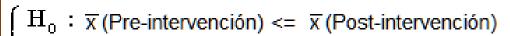
Supuestos asociados:

- La distribución de los datos de la variable dependiente es aproximadamente normal
- El tamaño de la muestra es mayor a 30
- Las variables tienen un nivel de medición al menos intervalar.

Procedimiento

- a) Formular las hipótesis nula y alternativa
 - H0= Los valores de media en la variable Ansiedad Post-tratamiento NO son menores a los del Pretratamiento.
 - H1= Los valores de media en la variable Ansiedad
 Post-tratamiento son menores a los del Pre-tratamiento.
- b) Establecer el estadístico de prueba adecuado: <u>Prueba t</u> <u>de Student para muestras apareadas</u>
- c) Seleccionar un nivel de significación: Alfa de 0,05
- d) Establecer la regla de decisión

El contraste se hace teniendo en cuenta la Media



 \mathbf{H}_1 : $\overline{\mathbf{x}}$ (Pre-intervención) > $\overline{\mathbf{x}}$ (Post-intervención)

Pruebas para la diferencia de valores medios entre dos muestras relacionadas (Dependientes o Apareadas) (Estrategia NO PARAMÉTRICA)

El estadístico No paramétrico para este tipo de análisis es la **Prueba Kruskal-Wallis**

Supuestos asociados

- se puede aplicar aún si la variable presenta una distribución no normal o si las muestras no son homogéneas.
- no exige un tamaño muestral grande (se puede realizar con una cantidad menor de 30 datos)
- la variable sometida a análisis puede tener un nivel de medición ordinal.

Procedimiento

- a) Formular las hipótesis nula y alternativa
 - H0= Los valores de media en la variable Ansiedad Post-tratamiento NO son menores a los del Pretratamiento.
 - H1= Los valores de media en la variable Ansiedad Post-tratamiento son menores a los del Pretratamiento.
- b) Establecer el estadístico de prueba adecuado: Prueba Rangos de Wilcoxon para muestras relacionadas
- c) Seleccionar un nivel de significación: Alfa de 0,05
- d) Establecer la regla de decisión

El contraste se hace teniendo en cuenta la Mediana

 H_0 : Me(Pre-intervención) <= Me(Post-intervención)

 H_1 : Me(Pre-intervención) > Me(Post-intervención)

Esta obra está bajo una <u>Licencia Creative</u>
<u>Commons Atribución-NoComercial-</u>
<u>Compartirlgual 4.0 Internacional</u>